Real-World Evidence Generation: Studies, databases, methods, and analytics

Dr. Alex Artyomenko MD PhD Head of RWE and Late Phase Division ERGOMED

DISCLAIMER

- The views and opinions expressed in this webinar slides are my own and should not be attributed to Ergomed, its management, employees, contractors, or clients
- Ergomed and their logo are registered trademarks of Ergomed
- All other trademarks are the property of their respective owners

THE NEXT 40 MINUTES...

- Setting the scene: RWE definitions
- Finding appropriate RWE options
- RWD adding value to the drug development lifecycle
- Evidence synthesis and network meta-analysis
- Regulations and international standards for RWD/Observational research

WHAT IS REAL-WORLD DATA?

- Data used for decisionmaking that are not collected in conventional RCTs...
- i.e., collected in an observational, noncontrolled, nonexperimental setting

Garrison, L.P., et al, (2007). Using RWD for coverage and payment decisions: the ISPOR RWD task force report. ISPOR Value in Health, Vol10, No5.

WHERE IS REAL-WORLD DATA?

In scarcely an instance have I been able to obtain hospital records fit for any purpose of comparison... if wisely used [hospital records] could tell us more of the relative value of particular operations and modes of treatment

Florence Nightingale

REAL-WORLD EVIDENCE

The new currency in healthcare

- Setting the scene: RWE definitions
- Finding appropriate RWE options
- RWD adding value to the drug development lifecycle
- Evidence synthesis and network meta-analysis
- Regulations and international standards impacting RWD/Observational research

HEALTHCARE IS CHANGING

- Cost and capacity challenges
- Increase in R&D costs and drug prices
- Informed patients, aging population, and personalized treatments
- Growing use of evidence syntheses and outcomes research
- Technology advances enabling data analysis

RWE: INCREASED DEMAND

DECISION-MAKING PERSPECTIVES

Pharma

- Understand the market
- Differentiate the product
- Address data gaps

Healthcare Providers

- Maximum treatment safety and effectiveness
- Reduced treatment costs

Payers/HTA

 Evidence of positive clinical, humanistic and economic outcomes

Patients

- Minimal side effects
- Cure the disease
- Improve quality of life
- Affordable care

(SOME OF) RWE OBJECTIVES

- Scientific (hypothesis generation)
- Clinical (improving standards of care),
- Commercial (market access, value demonstration)
- Regulatory (long-term safety and effectiveness)
- Patient-centered (humanistic, economic outcomes)

Specific examples:

- Long term safety and effectiveness
- Evaluate the disease prevalence and progression
- Analyze current standard of care, and healthcare utilization
- Provide patients with access to yet unapproved drug
- Evaluate and develop Patient-Reported
 Outcomes
 - Therapy Satisfaction, Quality of Life, Burden of illness, Adherence etc.

THE RWE JOURNEY

www.ergomedplc.com

ERGCMED

FINDING RWE OPTIONS

Development Stage

- Early (strategy)
- Mid (operational)
- Late (submissions)

Category

- Population
- Intervention/Comparator
- Outcome
- Study Design

(SOME OF) POTENTIAL ISSUES

- Trial population differs from usual practice
- Disease area is not well defined
- Administration of therapy/stopping rules/adherence is inconsistent with usual practice
- Trial comparators do not include current usual care or standard of care
- Trial outcomes not considered to be measures of effectiveness
- High risk of biased comparisons from observational (non-randomised) data
- Modelling of final outcomes from trial efficacy is not robust
- Trial treatment pathway is not generalisable to usual practice
- Other study design choices limit generalisability
- Evidence available is from single arm trials only

RWE OPTIONS

- Pragmatic clinical trial
- Modified RCT
 - population enrichment
 - cohort multiple RCT
 - comprehensive cohort study
 - cluster RCT
- Epidemiology studies and modelling
- Evidence synthesis, such as NMA
- Trial design based on NMA
- Methods to adjust bias
- Modelling to predict outcomes, re-weighting trial data

DECISION ALGORITHMS

THE REAL WORLD

CLINICAL TRIAL

PRAGMATIC TRIAL

PRAGMATIC TRIAL CONTINUUM

explanatory	continuum	pragmatic		
N				
Can treatment work? → EFFICACY - Hypothesis testing - Ideal circumstances	WHAT?	Does treatment work? →EFFECTIVENESS - Comparing treatment strategies - Usual care		
Assess <u>cause – effect</u> of drug	WHY?	Inform <u>decision makers</u>		
Minimize variation: - Rigid protocol	HOW?	<u>Maximise</u> generalisability: - Protocol reflecting usual care		
Selective inclusion	WHO?	<u>Broad</u> inclusion		
 Data collection > usual care Outcomes <u>research</u> relevant 	METHOD?	 Data collection = usual care Outcomes <u>clinically</u> relevant 		

- Setting the scene: RWE definitions
- Finding appropriate RWE options
- RWD adding value to the drug development lifecycle
- Evidence synthesis and network meta-analysis
- Regulations and international standards impacting RWD/Observational research

RWE: ADDING VALUE

Identify/demonstrate unmet need Explore root causes and/or stratify disease Inform R&D decisions Expand indications

Facilitate innovative trial designs (retro+, hybrid, etc.) Collect outcome data from new sources Efficient site selection Targeted patient recruitment

Positioning and economic value analysis Safety monitoring Precision targeting Design combined offerings

RWE THROUGHOUT THE LIFECYCLE

END-TO-END EVIDENCE MANAGEMENT

Deloitte Insights | deloitte.com/insights

EXAMPLES OF DATA FOR RWE

Data source	Data owners/curators	Typical coverage (patient records)	Typical time to data access
Administrative claims databases	HealthCore, Japanese Medical Claims Database, NHS, Optum, Truven,	> 10 million	Immediate
Electronic health/medical records	CPRD, Evidera, NorthWest eHealth, Optum, Parexel, PCORnet, QuintilesIMS	2–10 million	Immediate
Clinical registries	American College of Cardiology, SwedeHeart, CALIBER, CancerLinQ, Health Data Insight, Severe Asthma Registry	< 2 million	Within 1 year
Prospective studies and hybrid approaches	CROs/AROs, academic partnerships	> 1000	Over 1 year
Patient-generated data (e.g. social media or patient-powered research networks)	PatientsLikeMe, Carenity, PCORnet	> 100 000	Immediate ^b

- Setting the scene: RWE definitions
- Finding appropriate RWE options
- RWD adding value to the drug development lifecycle
- Evidence synthesis and network meta-analysis
- Regulations and international standards impacting RWD/Observational research

HIERARCHY OF EVIDENCE

EVIDENCE SYNTHESIS

- The process of retrieving, evaluating and summarising the findings of <u>all relevant</u> studies on a certain subject area.
- Estimate the effect <u>between</u> two interventions a systematic review of relevant RCTs and synthesis of the RCT results using meta-analytical techniques (in a pairwise meta-analysis).
- Multiple treatments available for the same disease network meta-analysis (NMA), an extension of the usual meta-analysis, may be used.

NETWORK META-ANALYSIS

- NMA is used to summarise relative treatment effects from RCTs that compare <u>multiple</u> competing interventions for the <u>same</u> <u>condition</u>
- Most NMAs are based on published aggregate data (AD), but this limits the ability to investigate the extent of network consistency and between-study heterogeneity.
- As individual participant data (IPD) are considered the gold standard in evidence synthesis, it may be possible to use this when conducting NMA.

WHY USE MA AND NMA

Meta-analysis:

- **Summarises** the evidence on the effects of an intervention.
- Assesses reproducibility and generalisability of individual study findings.
- Identifies sources of heterogeneity in treatment effects

NMA in particular:

- Increased precision and power compared with a series of pairwise meta-analyses (synthesising both direct and indirect evidence on treatment comparisons in a single analysis).
- Allows indirect comparison of interventions that have not been compared directly in head-to-head trials.
- Ranks treatments
- Reduces controversy between individual studies.
- Avoids selective use of data in decision-making
- Combines all of the evidence in a joint analysis.

www.ergomedplc.com

WHEN TO USE MAAND NMA

- Conflicting evidence
- Direct comparisons are not available
- Evidence only from comparisons with older or less effective treatments
- Bias in direct comparisons

NMA LIMITATIONS

- Not equivalent to direct evidence from RCTs
- Transitivity is assumed
- Difficulties in interpretation
- Complex to carry out
- Low return for effort

- Setting the scene: RWE definitions
- Finding appropriate RWE options
- RWD adding value to the drug development lifecycle
- Evidence synthesis and network meta-analysis
- Regulations and international standards impacting RWD/Observational research

RWE REQUIREMENTS

- After a medicinal product is approved, regulators expect that Marketing Authorization Holders (MAH) implement a pharmacovigilance system in order to continue monitoring the product's safety profile as they are used in clinical practice.
 - Spontaneous adverse reaction reporting
 - Interventional, phase IV clinical trials
 - Observational / Non-interventional studies PASS

REGULATORY REQUIREMENTS

- Guideline on good pharmacovigilance practices (GVP) Module VIII Postauthorisation safety studies
- GEP and GPP establish ethical and scientific standards for NIS
 - International Ethical Guidelines for Epidemiological Studies, CIOMS, 2017
 - <u>https://cioms.ch/wp-</u> content/uploads/2017/01/International_Ethical_Guidelines_LR.pdf
 - Guidelines for Good Pharmacoepidemiology Practices (GPP), ISPE, 2015
 - <u>https://www.pharmacoepi.org/resources/policies/guidelines-08027/</u>
- No harmonized regulatory framework across countries
 - CA notification, EC submission or notification, additional committees (Data Protection, Epidemiology etc.)

Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices

Guidance for Industry and Food and Drug Administration Staff

Document issued on August 31, 2017.

The draft of this document was issued on July 27, 2016

- RWD studies can provide information on a wider patient population, but an existing RWD source may have some <u>inherent bias</u> that could limit its value for drawing causal inferences between medical device exposures and outcomes.
- Careful study design, a study protocol and analysis plan should be created prior to accessing, retrieving, and analyzing RWD, <u>regardless</u> of whether the RWD are retroor prospectively collected
- Protocols and analysis plans for RWD should address <u>the same elements</u> that a traditional clinical trial protocol and statistical analysis plan would cover.

CHECKLISTS FOR QUALITY ASSESSMENT

- Non-randomised study designs, controlled cohort, controlled before-and-after studies
 - GRACE Checklist
 - STROBE combined checklist for cohort, case-control and cross-sectional studies
 - ROBINS-I Assessment tool
 - ISPOR checklists for prospective observational and for retrospective database studies
 - Checklist for statistical methods to address selection bias in estimating incremental costs, effectiveness and cost-effectiveness (Kreif et al, 2013)
 - CASP cohort study checklist
 - Newcastle-Ottawa scale (case-control studies)

RWE CHALLENGES

RWE MEETS DEEP MEDICINE

- Emerging strategic cross-sector and cross-country partnerships develop strategies to improve RWD standards, infrastructure and enable data use.
- A growing support for patients' data ownership, with data protection and privacy regulations restricting access.
- Technology remains the key enabler in extracting value from RWD.

THANK YOU

